Repairing Sparse Low-Rank Texture
نویسندگان
چکیده
In this paper, we show how to harness both lowrank and sparse structures in regular or near regular textures for image completion. Our method leverages the new convex optimization for low-rank and sparse signal recovery and can automatically correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. Through extensive simulations, we show our method can complete and repair textures corrupted by errors with both random and contiguous supports better than existing low-rank matrix recovery methods. Through experimental comparisons with existing image completion systems (such as Photoshop) our method demonstrate significant advantage over local patch based texture synthesis techniques in dealing with large corruption, non-uniform texture, and large perspective deformation.
منابع مشابه
A note on patch-based low-rank minimization for fast image denoising
Patch-based sparse representation and low-rank approximation for image processing attract much attention in recent years. The minimization of the matrix rank coupled with the Frobenius norm data fidelity can be solved by the hard thresholding filter with principle component analysis (PCA) or singular value decomposition (SVD). Based on this idea, we propose a patch-based low-rank minimization m...
متن کاملNon-Local Sparse and Low-Rank Regularization for Structure-Preserving Image Smoothing
This paper presents a new image smoothing method that better preserves prominent structures. Our method is inspired by the recent non-local image processing techniques on the patch grouping and filtering. Overall, it has three major contributions over previous works. First, we employ the diffusion map as the guidance image to improve the accuracy of patch similarity estimation using the region ...
متن کاملHigh Resolution Satellite Image Classification Using Multi-Task Joint Sparse and Low-Rank Representation
Scene classification plays an important role in the intelligent processing of HighResolution Satellite (HRS) remotely sensed image. In HRS image classification, multiple features, e.g. shape, color, and texture features, are employed to represent scenes from different perspectives. Accordingly, effective integration of multiple features always results in better performance compared to methods b...
متن کاملMulti-Task Joint Sparse and Low-Rank Representation for the Scene Classification of High-Resolution Remote Sensing Image
Scene classification plays an important role in the intelligent processing of High-Resolution Satellite (HRS) remotely sensed images. In HRS image classification, multiple features, e.g., shape, color, and texture features, are employed to represent scenes from different perspectives. Accordingly, effective integration of multiple features always results in better performance compared to method...
متن کاملSparse-TDA: Sparse Realization of Topological Data Analysis for Multi-Way Classification
Topological data analysis (TDA) has emerged as one of the most promising techniques to reconstruct the unknown shapes of high-dimensional spaces from observed data samples. TDA, thus, yields key shape descriptors in the form of persistent topological features that can be used for any supervised or unsupervised learning task, including multi-way classification. Sparse sampling, on the other hand...
متن کامل